Suppose that Σ is a finite "alphabet" (set) of characters or symbols.

- 1. Define what we mean by a *string* (or *word*) over the alphabet Σ .
 - (a) Compare the abstract concept of a string with those used in programs.
 - (b) What do we mean by the string ε ?
 - (c) Given a string x, what does |x| represent? What is $|\varepsilon|$?
- 2. If x and y are strings over Σ , define their **product** xy, i.e., $x \cdot y$.
 - (a) What other term describes this operation?
 - (b) What properties does this operation have, and—crucially—what key property does it not have?
 - (c) How does the product let us define nonnegative whole **powers** z^n of a string z?
 - (d) If x and y are strings, how can we simplify |xy| and $|x^n|$?
- 3. If W is a set of strings, define its *asterate* W^* .
 - (a) What properties does this operation have, and what string does this set *always* include?
 - (b) If x is a single character or string over Σ , we can define $x^* = \{x\}^*$. What strings does the set x^* contain?
 - (c) In words, what is Σ^* , and what does the statement " $x \in \Sigma^*$ " mean?
- 4. Blurring the line between strings and sets of strings a bit, if x and y are strings, what is meant by their formal sum x + y, and what set operation does this correspond to?
 What properties does this operation have, and how does it relate to our other operation "."?
- 5. What is a *regular expression* over Σ ?

... and in practice

In the problems below, characters in Σ will be written in typewriter font, with variables representing strings written as usual via *italic letters*.

- 6. Constrast, in writing, the meanings of the following, including the context of whether each is an *element* of Σ^* or a *subset* of Σ^* : (a) ε (b) \emptyset (c) $\{\varepsilon\}$
- 7. For any set W of strings, describe in writing what $W^* \setminus \{\varepsilon\}$ means.

[This comes up enough that we often denote it by W^+ .]

8. Simplify the following string expressions:

(a) $\mathbf{a}^3 \varepsilon^5 (\mathbf{b} \mathbf{c} \mathbf{a})^2$ (b) $\mathbf{a} (\varepsilon + \mathbf{b} + \mathbf{c}) w$ (c) $(\varepsilon + \mathbf{a}) (\varepsilon + \mathbf{b})$ (d) $(\mathbf{a} + xy)^3$

- 9. Describe the sets of strings generated by the following regular expressions over $\Sigma = \{0, 1\}$, both in writing and using set-builder notation:
 - (a) 1^* (b) 01^* (c) 0^*1 (d) $(01)^*$ (e) 0^*1^*
- 10. Find regular expressions expressing the following sets of strings over $\Sigma = \{0, 1\}$:
 - (a) all strings starting with 101;
 - (b) all strings containing the substring 000;
 - (c) all strings that can be built as a products of some number of copies of the string 001; and
 - (d) all strings in which a 0 is not preceded by a 1.